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Abstract. It is argued that one natural choice for the coordinates of the constituents of a baryonic state
in a SU(N) gauge theory is the choice of N × N hermitian matrices. It is discussed that the relevance
of matrix coordinates is supported at least by the restricted form of the color symmetry. Based on the
previous investigations in this direction, the consequences of this idea are reviewed. The model has been
considered in which it originates in the D0-branes of the string theory.

One of the main themes in quantum mechanics is to found
our physical theories exclusively upon relationships be-
tween quantities which in principle are observable [1]. At
present, it is commonly believed that a hadron has quarks
as part of its ingredients, though they cannot be detected
directly. From the pure theoretical point of view, one
quark on its own is like the other particles, and has some
observable quantities, such as position, momentum, spin
or charge. In practice, seemingly we are always faced with
the properties of quarks being hidden inside hadrons. Al-
though it does not seem natural to assume that quarks
do not carry any of the usual degrees of freedom or their
degrees of freedom can be completely ignored, it may be a
desirable framework – if it is possible – to assume that the
degrees of freedom can become “unreachable” due to some
kind of symmetry. In other words, due to a symmetry it
would not be expected that, for example, the position of
an individual quark can be measured. Or even the ques-
tion about “the position of an individual quark with a
specific color” becomes meaningless.

In [2–5], a model was considered which shares the fea-
ture we mentioned above. This model originates in the
D0-branes [6,7] of string theory, for which it is known
that their degrees of freedom are captured by matrices,
rather than numbers [8]. The model one was concerned
with in [2–5] has shown its ability to reproduce or cover
some features and expectations in hadron physics. Some
of these features and expectations are phenomenological
inter-quark potentials, the behavior of total scattering am-
plitudes, a rich polology of the scattering amplitude, be-
havior in the large-N limit, and the whiteness of baryons
with respect to the SU(N) sector of the external fields.

As mentioned, the internal dynamics of the D0-brane
bound state is described by a matrix model of coordinates,
and if the matrix coordinates of D0-branes have something
to do with hadron physics, it is very logical to ask: “Is it
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possible to extract or derive these matrices from some first
principles of quantum chromodynamics (QCD)?” In fact
the answer to this question has been the motivation for
the present work, and as we will see, it turns out that the
appearance of matrix coordinates in the theory of quarks
is as natural as the appearance in the theory of D0-branes.
Before presenting the formal derivation, let us present the
heuristic argument. Recalling the procedure of reasoning
in D0-brane theory, we note that the matrix coordinates
are the result of some states, to be specific some open
string states, which are equipped with two more labels
than the usual ones, the so-called Chan–Paton labels [8,
7,9]. In the open string picture these labels are attached
to the ends of the string. On the other side, D0-branes
are defined as point-like objects at whom the open strings
end. By this picture, each D0-brane is accompanied with
some more degrees of freedom than the usual ones of an
ordinary particle. In other words, each D0-brane has some
more degrees of freedom which express to which other D0-
branes (and in what places) it is connected, i.e., has made
a bound state with others. Eventually it appears that in
a bound state of N D0-branes, the number of relevant
degrees of freedom in each direction of space, rather than
N , isN2; this may be represented by a matrix belonging to
the U(N) algebra. Now as we shall recognize in a moment,
this reasoning is applicable for the case of quarks, in which
the states have the “color” additional degrees of freedom.

In the constituent quark picture of a SU(N) gauge
theory, a baryon is made by N quarks in different col-
ors; and besides, to bring the baryon state to the form
of a singlet in color space, anti-symmetrization in the
color labels is understood. Let us for the moment forget
about the rotation in the color space, and assume that the
baryon is just made up of N quarks in different colors,
represented by the states and wavefunctions |ψa(t)〉 and
〈xa|ψa(t)〉 = ψa(xa, t), a = 1, · · · , N , respectively; in this
work we also do not care about the fermionic or bosonic



146 A.H. Fatollahi: On the relevance of matrix coordinates for the inside of baryons

nature of the quarks. Though the wavefunctions depend
on different arguments x1, · · · ,xN , while keeping the right
form of each function ψa, we may represent them by one
argument x: ψa(x, t). By this we can define the N × N
matrix X via its elements Xab(t) ≡ ∫

dxψ∗
b (x, t)xψa(x, t).

Here we assume that the states are normalized properly, to
yield the length dimension for the elements of X, accom-
panied with the value 1 for the total probability. It is easily
seen that X is a N×N hermitian matrix, and its elements
are characterized by the color labels a, b = 1, · · · , N .

Let us take the case for which we have well-separated
quarks, which may be represented by the wavefunctions
ψa(x, t) � δ(x − xa) with |xa − xb| � � (a �= b), for
some characteristic length �. For this case, the matrix
X(t) is almost, or even in this case exactly, diagonal. Sup-
pose we take the length scale � to be the order of the
baryon size. From our experience, we know that the sit-
uation we have considered above is never seen in prac-
tice! The most expected situation is that, due to confine-
ment, the N quarks have considerable overlap between
their wavefunctions and form a baryon. Correspondingly,
we have learnt to deal always with permanently “con-
nected” quarks, for which the matrix X(t) appears always
in non-diagonal form, and this may cause one to believe in
the essence of more degrees of freedom as representatives
and also in the description of permanent connectivity of
the quarks. We note that in fact a huge amount of in-
formation about the inside of a baryon is encoded in the
wavefunctions of its constituents, or equivalently in the
matrix coordinate X and its generalizations to higher mo-
ments X(n)

ab (t) ≡ ∫
dxψ∗

b (x, t)xnψa(x, t), n = 0, 2, 3, 4, · · ·
The above simple observation may suggest that the matrix
coordinate X and its generalizations to higher moments
can lead to the criteria for the identification of the con-
fined phase of the theory. Besides, the matrix coordinate
X and its higher moments may be taken as a set of very
powerful tools for the characterization and the study of
the observable states in a confined theory. Therefore, it
will be very tempting to see by considering the matrix
X(t) as the dynamical variable relevant for the inside of a
baryon, what kind of information and conceptual insights
come out.

Before proceeding, it is useful to mention that the ma-
trix coordinate can also be constructed from the original
quark field in the Lagrangian. We take a SU(N) gauge
theory, consisting of one kind of flavor in the fundamental
matter representation. We treat this example as quantum
mechanics, rather than a field theory. The states of matter
in this quantum mechanical problem are represented by

|Ψ(t)〉 =




|ψ1(t)〉
|ψ2(t)〉

...
|ψN (t)〉


 . (1)

So we have the expansion |Ψ(t)〉 =
∫

dx
∑N

a=1 ψa(x, t)|x〉
⊗ |a〉, in which the index a is labelling the isospin, and
ψa(x, t) ≡ 〈x|ψa(t)〉. We define the density matrix opera-
tor ρ̂(t) by

ρ̂(t) ≡ |Ψ(t)〉〈Ψ(t)|, (2)

which is an N ×N matrix with the general element ρ̂ab(t)
= |ψa(t)〉〈ψb(t)|. By the density operator ρ̂ab(t), we can
evaluate a particular expectation value for the position
operator simply by

X(t) ≡ trx(x̂ρ̂(t)) = (3)



〈ψ1(t)|x̂|ψ1(t)〉 〈ψ2(t)|x̂|ψ1(t)〉 . . . 〈ψN (t)|x̂|ψ1(t)〉
〈ψ1(t)|x̂|ψ2(t)〉 . . . . . . . . .

...
. . .

. . .
...

〈ψ1(t)|x̂|ψN (t)〉 . . . . . . 〈ψN (t)|x̂|ψN (t)〉



,

in which x̂ is the usual position operator, and trx means
the integration on the volume of space, yielding

〈ψa(t)|x̂|ψb(t)〉 =
∫

dxψ∗
a(x, t)xψb(x, t).

The general element is defined by

Xab(t) = 〈ψb(t)|x̂|ψa(t)〉 = X∗
ba(t),

and so the matrix coordinate X(t) is a N ×N hermitian
matrix with the usual expansion in color (isospin) space
X(t) =

∑N
a,b=1 Xab(t)|a〉〈b|. Again as is easily recognized,

the elements of the matrix coordinate X are characterized
by the color labels a, b = 1, · · · , N .

As usual, it is natural to assume that the expectation
values satisfy some classical equations of motion. Also, we
expect that via the quantization of the resultant classical
theory, we end up with the original quantum theory. In the
general case, one expects that the classical equations can
be derived from the quantized theory, in particular by the
equations of motion for the states or wavefunctions. Since
in the problem at hand the quantum theory, especially
in the non-perturbative regime, is too hard to solve, one
may try to formulate the classical theory on some general
grounds. In our specific case we are naturally faced with
a matrix model. So the general classical action for the
coordinates X(t) may be taken to be

S[X] =
∫

dtTr
(

1
2
mẊ · Ẋ − V(X, Ẋ,Xab, Ẋab)

)
, (4)

where Tr acts on the matrix structure, and “V(· · ·)” is
for the possible potential term, depending on matrix co-
ordinate or velocity, or probably some of their individual
elements Xab and Ẋab. For the well-separated quarks, as
was mentioned before, the coordinate matrix X(t) is al-
most, or in this case even exactly, diagonal and the action
(4) becomes

S[X]�S[x1, · · · ,xN ]=
∫

dt
N∑

a=1

(
1
2
mẋa · ẋa − · · ·

)
, (5)

in which xa = Xaa. The kinetic term of the action (5)
may be interpreted as the kinetic term of the N quarks.
This shows that our new tools, the matrix coordinates,
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consist of the information we usually realize, in particular
the positions and velocities of the individual quarks.

The issue of gauge symmetry of the original quantum
mechanical problem should be considered. The theory we
start with is invariant under the transformations

|Ψ(t)〉 → |Ψ ′(t)〉 = V̂ (x̂, t)|Ψ(t)〉,
〈Ψ(t)| → 〈Ψ ′(t)| = 〈Ψ(t)|V̂ †(x̂, t),

Ô(x̂, p̂, t, ∂t) → Ô′(x̂, p̂, t, ∂t) (6)

= V̂ (x̂, t)Ô(x̂, p̂, t, ∂t)V̂ †(x̂, t),

for the Hamiltonian of the form H = 〈Ψ(t)|Ô(x̂, p̂, t, ∂t)
|Ψ(t)〉, and V̂ (x̂, t) is an N × N unitary operator, i.e.,
V̂ V̂ † = V̂ †V̂ = 1N . Due to integration on the space

∫
dx,

it might not be expected that in a simple way the whole
large symmetry above can be recovered in the theory for
matrix coordinates. Instead we assume that the position
dependence of the V̂ matrix is in the form of V̂ (x̂, t) =
Ũ(x̂)U(t), where U(t) is an N × N unitary matrix, and
Ũ(x̂) is a phase depending on the position operator x̂,
i.e., Ũ Ũ∗ = 1. By this kind of transformations we are
treating the position dependence of matrix V̂ as a U(1)
group, rather than a non-Abelian one. Later we will try
to present some kind of justification for the restriction
on the transformations. It can be seen that the matrix
coordinate transforms as X(t) → X′(t) = U(t)X(t)U†(t).
So our matrix theory, at least, should be invariant under
this kind of transformations1, and as usual this can be
done by introducing a covariant derivative. So the action
(4) can be rewritten as

S[at,X] =
∫

dtTr
(

1
2
mDtX ·DtX − V(X, DtX)

)
, (7)

in which DtX = Ẋ + i[at,X], with at(t) the one dimen-
sional N×N hermitian gauge field. We see that the action
is now invariant under the transformations

X → X′ = UXU†,
at → a′

t = UatU
† − iU∂tU

†, (8)

with U ≡ U(t) an arbitrary N ×N unitary matrix; in fact
under these transformations one obtains

DtX → D′
tX

′ = U(DtX)U†,

DtDtX → D′
tD

′
tX

′ = U(DtDtX)U†. (9)

One may go a little more in details on the potential
term. First, we assume that the potential is linear in the
velocity DtX, appearing in the potential as DtX ·A(X, t).
Second, since here we have matrices as coordinates, we
can decompose the velocity independent term to com-
pletely symmetric and non-symmetric parts in compo-
nents of X = (X1, X2, · · · , Xd). We note that each com-
ponent Xi is a matrix. The non-symmetric part can be
expanded as

1 The invariance under the global transformations by V̂ (x̂, t)
= V0, with V0 a constant N ×N unitary matrix, requires that
the action should not consist of the individual elements of X,
as we assumed in (4), in the first step

V veloc. indepen.
non−symm.

(X)

= Xi + [Xi, Xj ] +Xi[Xj , Xk]︸ ︷︷ ︸
− m

4l4
[Xi, Xj ][Xi, Xj ] +O(X6), (10)

in which the terms “ · · ·︸︷︷︸” consist of free space indices

or traceless parts. So the first surviving term is “−m[Xi,
Xj ]2/4l4”, with l a proper length scale. Finally, we require
that the vector potential A(X, t) is also symmetric in the
components Xi. Putting these all into the potential term,
we end up with the action

S[at,X] =
∫

dtTr
(

1
2
mDtX ·DtX + qDtX · A(X, t)

− qA0(X, t) +
m

4l4
[Xi, Xj ]2

)
, (11)

in which A0(X, t) is the symmetric part of the velocity
independent term of the potential, and q plays the role
of the charge. We note that the fields (A0(X, t),A(X, t))
appear asN×N hermitian matrices due to their functional
dependence on the matrix coordinate X. It is interesting
to study the gauge symmetry of this action. One can check
easily that the action (11) is invariant under the symmetry
transformations [10–12]

X → X′ = UXU†, (12)

at(t) → a′
t(t) = Uat(t)U† − iU

d
dt
U†,

Ai(X, t) → A′
i(X

′, t) = UAi(X, t)U† + iUδiU†,

A0(X, t) → A′
0(X

′, t) = UA0(X, t)U† − iU∂tU
†,

where U ≡ U(X, t) = exp(iΛ) is arbitrary up to the con-
dition that Λ(X, t) is hermitian and totally symmetrized
in the Xi. Above, δi is the functional derivative δ/δXi,
and we note that though U(X, t) depends on X(t), due to
the total derivative d/dt, a′

t(t) still only depends on time.
We recall that, in approving the invariance of the action,
the symmetrization prescription on the matrix coordinates
plays an essential role [10,11]. It is by this symmetry trans-
formation that we expect that no distinguished role should
be identified to the (diagonal or off-diagonal) elements of
the matrix coordinate. In other words, since none of the
matrix elements are gauge invariant quantities, they are
not expected to appear as an observable final state.

The above transformations on the gauge potentials are
similar to those of non-Abelian gauge theories, and we
mention that this is just a consequence of the enhance-
ment of the degrees of freedom from numbers (x) to ma-
trices (X). In other words, we are faced with a situation in
which “the rotation of fields” is generated by “the rotation
of coordinates” [11]. In addition, the case we see here may
be considered as a finite-N version of the relation between
gauge symmetry transformations and transformations of
matrix coordinates [13]. Despite the non-Abelian behavior
of the gauge transformations, we should note that the sym-
metry is still not equivalent to a non-Abelian one. To see
this, we should recall that the symmetry transformations
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of, for example, a U(N) gauge theory is generated by N2

functions of space-time, say Λα(x, t) (α = 0, · · · , N2 − 1),
in the group element exp(iΛαT

α), where the Tα are U(N)
generators. Now although U(X, t) = exp(iΛ(X, t)) in (12)
is a unitary matrix due to its dependence on the matrix
coordinate, it is constructed by just one function Λ(x, t),
after replacing the coordinates by matrices i.e. x → X,
under the condition of symmetrization. After all, it is
quite natural to interpret the fields (A0,A) as the ex-
ternal gauge fields that the constituents, whose degrees of
freedom are included in the matrix coordinate, interact
with.

The action (11) is known to be the action of N D0-
branes of string theory, in the background of the (RR)
gauge field (A0(x, t),A(x, t)), for x as the ordinary co-
ordinates [14]. As mentioned before, from the string the-
ory point of view, D0-branes are point particles to which
ends of strings are attached [6]. In a bound state of N
D0-branes, they are connected to each other by strings
stretched between them, and it can be shown that, by
counting the degrees of freedom for the oriented strings,
the correct dynamical variables describing the positions
of D0-branes are N ×N hermitian matrices [8]. By com-
parison, we find that m is the mass of D0-branes and l
is the order of the string length. In [2–5] the possibility
for the identification of the dynamics of D0-branes and
quarks are investigated. Here we recall some of the as-
pects mentioned in these papers. First of all, we see that
by the gauge transformation (12), the elements of the po-
sition matrix mix with each other, and so the interpreta-
tion of the positions for the D0-branes remains obscure.
Nevertheless, we note that the concept of center-of-mass
(c.m.), here represented by the trace of the matrix coor-
dinate, is meaningful. So the ambiguity of the positions
only remains for the degrees of freedom counting the rel-
ative positions of the D0-branes and the strings stretched
between them. The equations of motion for the Xi and
at by the action (11), ignoring the commutator potential
[Xi, Xj ]2, is found to be [10–12]

mDtDtXi = q(Ei(X, t) +DtX
jBji(X, t)︸ ︷︷ ︸), (13)

m[Xi, DtX
i] = q[Ai(X, t), Xi], (14)

with the following definitions:

Ei(X, t) ≡ −δiA0(X, t) − ∂tAi(X, t), (15)
Bji(X, t) ≡ −δjAi(X, t) + δiAj(X, t). (16)

In (13), the symbol DtX
jBji(X, t)︸ ︷︷ ︸ denotes the average

over all of the positions of DtX
j over the X of Bji(X, t).

The above equations for the X are like the Lorentz equa-
tions of motion, with the exceptions that the two sides are
N ×N matrices, and the time derivative ∂t is replaced by
its covariant counterpart Dt.

The behavior of (13) and (14) under the gauge trans-
formation (12) can be checked. Since the action is invari-
ant under (12), it is expected that the equations of motion
change covariantly. The left-hand side of (13) changes to

U†DtDtXU by (9), and therefore we should find the same
change for the right-hand side. One can check that in fact
this is the case [10–12], and consequently one finds that
(16) leads to

Ei(X, t) → E′
i(X

′, t) = UEi(X, t)U†,

Bji(X, t) → B′
ji(X

′, t) = UBji(X, t)U†. (17)

This result is consistent with the fact that Ei and Bji

are functionals of the X. We thus see that, in spite of
the absence of the usual commutator term i[Aµ, Aν ] of
non-Abelian gauge theories, in our case the field strengths
transform like non-Abelian ones. We recall that these are
all consequences of the matrix coordinates of the D0-
branes. Finally by a similar reason, vanishing of the second
term of (11), both sides of (14) transform identically.

An equation of motion similar to (13) is considered
in [5,4] as a part of similarities between the dynamics of
D0-branes and bound states of quarks–QCD strings in a
baryonic state [5,4,2]. The point is that the dynamics of
the bound state c.m. is not affected directly by the non-
Abelian sector of the background, i.e., the c.m. is “white”
with respect to the SU(N) sector of the matrices. The c.m.
coordinates and momenta are defined by

xc.m. ≡ 1
N

TrX, pc.m. ≡ TrP, (18)

where we are using the convention Tr1N = N . To specify
the net charge of a bound state (which is an extended ob-
ject) its dynamics should be studied in zero magnetic and
uniform electric fields, i.e., Bji = 0 and Ei(X, t) = E0i

2.
Since the fields are uniform, they do not involve the Xi

matrices, and contain just the U(1) part. In other words,
under gauge transformations E0i and Bji = 0 transform to
E′

i(X, t) = U(X, t)E0iU
†(X, t) = E0i and B′

ji = 0. Thus
the action (11) yields the following equation of motion:

(Nm)ẍc.m. = NqE0(1), (19)

in which the subscript (1) emphasizes the U(1) electric
field. So the c.m. interacts directly only with the U(1) of
U(N). From the string theory point of view, this observa-
tion is based on the simple fact that the SU(N) structure
of the D0-branes arises just from the internal degrees of
freedom inside the bound state. In other words, the ma-
trix behavior of the coordinates, and the resulting non-
commutativity, is just restricted to the relative positions
of the D0-branes. In this picture, we may call this situation
“confined non-commutativity” [12,11,5,4]. This behavior
of D0-brane bound states is the same as that of baryons.
It means that each D0-brane feels the net effect of other
D0-branes as the white-complement of its color. In other
words, the field flux extracted from one D0-brane to the
other ones are the same as the flux between a color and
an anti-color, Fig. 1. This shape for the electric flux is in
agreement with the result of the field theory correlator

2 In a non-Abelian gauge theory a uniform electric field can
be defined up to a gauge transformation, which is sufficient for
the identification of white (singlet) states
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a b

Fig. 1a,b. The net electric flux extracted from each quark is
equivalent in a baryon a and a meson b. The D0-brane–quark
correspondence suggests the string-like shape for the flux inside
a baryon a

method [15]. It was pointed out that the gauge symmetry
associated to the gauge field (A0(X, t),A(X, t)), though
looking similar to the non-Abelian gauge theories, is in-
trinsically U(1). Based on the observation we have made
here about the whiteness of the bound state, we may ar-
gue that in this phase all of the observable states should
have an equivalent amount of U(N) sectors, the symme-
try appears to be restricted, and equivalently for U(1). In
fact this is the case that we expect to see when we are
faced with matrix coordinates as the relevant degrees of
freedom.

It is desirable to assign a net charge different from Nq
to the c.m. This can be done simply by modifying the
action (11):

S′[at,X] = S[at,X] (20)

+
∫

dt(Nq′ẋc.m. · A(xc.m., t) −Nq′A0(xc.m., t)),

in which S[at,X] is the action (11). With this action the
charge of the c.m. is equal to N(q + q′), rather than Nq.

Now, let us ignore for the moment the external gauge
field (A0,A). The equations of motion can be solved by
diagonal configurations, such as

X(t) = diag.(x1(t), · · · ,xN (t)),
at(t) = diag.(at1(t), · · · , atN (t)), (21)

with xa = xa0 + vat, a = 1, · · · , N . In this configura-
tion, we restrict the U(N) generators to theN dimensional
Cartan subalgebra. This configuration describes the “clas-
sical” free motion of N D0-branes, neglecting the effects
of the strings (and the symmetry supported by them). Of
course the situation is different when we consider quan-
tum effects, and consequently it will be realized that the
dynamics of the off-diagonal elements affect the dynamics
of the D0-branes significantly. Concerning the effect of the
strings, one may try to extract the effective theory for D0-
branes, i.e., for the diagonal configurations. In particular,
it will be found that the commutator potential is responsi-
ble for the formation of the bound state, and by a simple
dimensional analysis we understand that the size of the
bound state, �, is ∼ m−1/3l2/3. As in [2] (see also [4,5]),
let us take the example of static D0-branes. For this con-
figuration one can easily calculate the one-loop effective
potential between the quarks, getting [4,5,2]

Vone−loop ∼ 4π
d− 1

2

N∑
a>b=1

|xa − xb|
l2

. (22)

This result shows the linear potential between each pair of
D0-branes. Previously we mentioned, by qualitative con-
siderations, what should be the shape of the electric flux
(Fig. 1). Now, by the interpretation of (22) as the effective
potential of a constituent quark model, we are enabled to
get to know something more about the bound state and
more quantitative details. One can trace support for the
linear behavior of the potential in the literature, namely
results by lattice calculations [16,17], and things we ex-
pect from the spin–mass Regge trajectories. In [18] by tak-
ing the linear potential between the quarks of a baryonic
state in the transverse direction of the light-cone frame,
the structure functions obtained are in good agreement
with the observed ones. Since the original theory is in-
variant under rotation among the color indices 1, · · · , N ,
we mention that only the states which are singlets under
the (global) rotation among the indices can be accepted
as the physical states of the effective theory for diagonal
elements.

The formulation we presented above is in the non-
relativistic limit. Though it is expected that this limit pro-
duces good results for heavy quarks, for light or massless
quarks we should change our approach. One way can be
starting by a covariant theory; treating time and space
equivalently. In this way, although the terms responsi-
ble for kinetic energy and interaction with external gauge
fields get reasonable forms (see [11,12]), the main prob-
lem will appear to be with potentials as [Xµ, Xν ]2. Instead
one may follow another approach to say something about
the covariant theory. The worldline formulation we have
here is that of the M(atrix) model conjecture [19, 20], ac-
companied with the interaction terms with external gauge
fields. For the case of the dynamics of a massless charged
particle with ordinary coordinates, we can see easily that
the light-cone dynamics have a form similar to what we
have in the action (11); see the appendix of [4]. To ap-
proach the covariant formulation, following the finite-N
interpretation of [21], it is reasonable to interpret things
in the DLCQ framework [3–5,12]. In this interpretation,
the mass parameter m is the longitudinal momentum, and
the spatial directions present the transverse coordinates in
the light-cone frame. In addition, according to the specific
form of the action (11) the rest mass of quarks is assumed
to be zero (see [4,5]).

In [3,4,12] the problem of scattering of
(1) a D0-brane off another one, and
(2) a D0-brane bound state off an external gauge field
probe, were considered.

As we mentioned above, both of these scattering pro-
cesses can be interpreted in the light-cone frame. For the
case of scattering of a D0-brane off another one, the expec-
tations for the well-known Regge behavior are satisfied. As
for the problem of an interaction between the D0-brane
bound state and “photons” of the gauge field, interest-
ing observations are expected for the regime in which the
details of the bound state can be probed. Here we just
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present the general expected features; see [12] for more
details. As argued before, the external field depends on
the internal coordinates of the bound state under the sym-
metrization condition in the matrix coordinates. One way
to cover the symmetrization is to use the so-called “non-
Abelian Fourier expansion” [12]. For an arbitrary function
f(X, t) the non-Abelian Fourier expansion will be found
to be

f(X, t) =
∫

dkf̄(k, t)eik·X, (23)

in which f̄(k, t) are the Fourier components of the function
f(x, t) (i.e., a function by of ordinary coordinates) which
is defined by the known expression

f̄(k, t) ≡ 1
(2π)d

∫
dxf(x, t)e−ik·x. (24)

Since the momentum numbers ki are ordinary numbers
and so commute with each other, the symmetrization pre-
scription is automatically recovered in the expansion of
the momentum eigen-functions eik·X. Now, by using the
symmetric expansion (23), we can imagine some general
aspects of the interaction between the D0-brane bound
states and RR photons. As we mentioned before the size
of the bound state, for a finite number N of D0-branes is
finite and is of the order of � ∼ m−1/3l2/3.

Before proceeding, we should distinguish the dynam-
ics of the c.m. from the internal degrees of freedom of
the bound state. As mentioned before, the c.m. position
and momentum of the bound state are represented by the
U(1) sector of the U(N) = SU(N) × U(1), and thus the
information related to the c.m. can be gained simply by
the Tr-operation. So the internal degrees of freedom of the
bound state, which consist of the relative positions of N
D0-branes together with the dynamics of strings stretched
between the D0-branes, are described by the SU(N) sector
of the matrix coordinates. It is easy to see that the commu-
tator potential in the action has some flat directions, along
which the eigenvalues can take arbitrary large values. But
it is understood that, by considering the quantum effects
and in the case that we expect the formation of the bound
state, we should expect suppression of the large values of
the internal degrees of freedom [22]. Consequently, it is
expected that the SU(N) sector of the matrix coordinates
take mean values like 〈Xi

α〉 ∼ � (α = 1, · · · , N2 − 1, not
α = 0 as for the c.m.), with � as the bound state size scale
mentioned in above. We should mention that, though the
c.m. is represented by the U(1) sector, its dynamics is af-
fected by the interaction of the ingredients of the bound
state with the SU(N) sector of external fields, similar to
the situation we imagine in the case of the Van der Waals
force.

The important question about the interaction of a
bound state (as an extended object) with an external field,
is of “the regime in which the substructure of bound state
is probed”. As we mentioned in the introduction, in our
case the quanta of the RR fields are the representatives of
the external field. The quanta are coming from a “source”,
and so as it makes things easier, we ignore its dynamics.

Fig. 2a,b. Substructure is not seen by the long wavelength
modes a. Due to functional dependence on the matrix coordi-
nates, the short wavelength modes can probe the inside of the
bound state b. � and Āµ(k, t) represent the size of the bound
state and the Fourier modes, respectively

The source is introduced into our problem by the gauge
field Aµ(x, t). These fields appear in the action by func-
tional dependence on the matrix coordinates X. In fact
this is the key of how we can probe the substructure of
the bound state. According to the non-Abelian Fourier
expansion we mentioned above, we have

Aµ(X, t) =
∫

dkĀµ(k, t)eik·X, (25)

in which the Āµ(k, t) are the Fourier components of the
fields Aµ(x, t) (i.e., fields with ordinary coordinates). One
can imagine the scattering processes which are designed
to probe the inside of the bound state. As for every other
scattering process, the two limits of the momentum modes
corresponding to long and short wavelengths behave dif-
ferently.

In the limit �|k| → 0 (long wavelength regime), the
field Aµ is not involved via the X matrices mainly. This
means that the fields appear to be nearly constant inside
the bound state, and in a rough estimation we have

eik·X ∼ eik·Xc.m. . (26)

So in this limit we expect that the substructure and con-
sequently non-commutativity will not be seen; Fig. 2a. As
a consequence, after interaction with a long wavelength
mode, it is not expected that the bound state will jump to
another energy level different from the first one. It should
be noted that the c.m. dynamics can be affected as well
in this case.

In the limit �|k| = finite (short wavelength regime), the
fields depend on the coordinates X inside the bound state,
and so the substructure responsible for non-commutativity
should be probed; Fig. 2b. In fact, we know that the non-
commutativity of the D0-brane coordinates is a conse-
quence of the strings which are stretched between the D0-
branes. In this case, it is completely expectable that the
energy level of the incoming and outgoing bound states
will be different, since the ingredients of the bound state
substructure can absorb quanta of energy from the inci-
dent wave. In this case the c.m. dynamics can be affected
in a novel way by the interaction of the substructure with
the external fields (the Van der Waals effect). In the gen-
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eral case, one can gain more information about the sub-
structure of a bound state by analyzing the “recoil” effect
on the source. To do this, one should be able to include
the dynamics of the source in the formulation. Considering
the dynamics of the source in the terms of quantized field
theory means that we consider the processes in which the
source and the target exchange “one quantum of gauge
field” with definite wavelength and frequency, though off-
shell, as Aµ(x, t) ∼ εµeik·x−iωt.

Up to now, we have considered things for the theory
with one kind of flavor. It is interesting to think about the
case with more than one flavor. One suggestion can be as
follows: assume that the flavor A with mass mA is repre-
sented by the state |ΨA(t)〉. We may re-scale the states as
|ΨA〉 → |Ψ̃A〉 = (mA)1/4|ΨA〉. For a baryon consisting of
N heavy flavors we define the matrix coordinate by

X̃(t)≡




〈ψ̃1(t)|x̂|ψ̃1(t)〉 〈ψ̃2(t)|x̂|ψ̃1(t)〉 . . . 〈ψ̃N (t)|x̂|ψ̃1(t)〉
〈ψ̃1(t)|x̂|ψ̃2(t)〉 . . . . . . . . .

...
. . .

. . .
...

〈ψ̃1(t)|x̂|ψ̃N (t)〉 . . . . . . 〈ψ̃N (t)|x̂|ψ̃N (t)〉




.

(27)
For this coordinate we take the action

S[X̃] =
∫

dtTr
(

1
2

˙̃X · ˙̃X − · · ·
)
. (28)

Now, for the well-separated states, for which we have di-
agonal coordinates, the action in terms of the original co-
ordinates (i.e., before re-scaling) becomes

S[xA] =
∫

dt
N∑

A=1

(
1
2
mAẋA · ẋA − · · ·

)
, (29)

in which we see that each flavor has the expected kinetic
term. It is worth recalling that due to the color symmetry
that we expect, the coordinate to which the symmetry
transformation should apply is X̃.

In [11] a conceptual relation between the use of the
matrix coordinates for non-Abelian gauge theory purposes
and the ideas concerned in special relativity is mentioned;
see also [5,4,2]. According to an interpretation of the spe-
cial relativity, it is meaningful if the “coordinates” and
the “fields” in a theory have some kind of similar char-
acters. As an example, we observe that both the space-
time coordinates xµ and the electromagnetic potentials
Aµ(x) transform equivalently (i.e., as a (d + 1)-vector)
under boost transformations. Also by this interpretation,
the superspace formulations of supersymmetric field and
superstring theories are the natural continuation of the
special relativity program. In the case of the use of matrix
coordinates, it may be argued that the relation between
“matrix coordinates” and “matrix fields” (gauge fields of
a non-Abelian gauge theory) is one of the expectations
which is supported by the spirit of special relativity. From
the previous discussion we recall that
(1) the matrix character of gauge fields is the result of
dependence of them on matrix coordinates [11],

(2) the symmetry transformations of gauge fields are in-
duced by the transformations of the matrix coordinates
[11],
(3) the transformations of fields in the theory on the ma-
trix space appeared to be similar to those of non-Abelian
gauge theories; see the relations (12) and (17). This inter-
pretation leads us to conclude that the non-Abelian gauge
fields in a confined theory do not have an independent
character, and they are introduced into the formalism due
to the functional dependence on the matrix coordinates
of “bounded quarks”. It seems very interesting when we
note that by the present experimental data, the existence
of pure gluonic states, so-called glueballs, is quite doubt-
ful. This lack of detection may be taken as support for the
interpretation presented above.
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